3.1294 \(\int \frac{\cot ^2(c+d x) \csc ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=238 \[ -\frac{2 b^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^6 d}+\frac{\left (5 a^2 b^2+2 a^4-15 b^4\right ) \cot (c+d x)}{15 a^5 d}-\frac{b \left (4 a^2 b^2+a^4-8 b^4\right ) \tanh ^{-1}(\cos (c+d x))}{8 a^6 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d} \]

[Out]

(-2*b^4*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^6*d) - (b*(a^4 + 4*a^2*b^2 - 8*b^
4)*ArcTanh[Cos[c + d*x]])/(8*a^6*d) + ((2*a^4 + 5*a^2*b^2 - 15*b^4)*Cot[c + d*x])/(15*a^5*d) - (b*(a^2 - 4*b^2
)*Cot[c + d*x]*Csc[c + d*x])/(8*a^4*d) + ((a^2 - 5*b^2)*Cot[c + d*x]*Csc[c + d*x]^2)/(15*a^3*d) + (b*Cot[c + d
*x]*Csc[c + d*x]^3)/(4*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]^4)/(5*a*d)

________________________________________________________________________________________

Rubi [A]  time = 1.22683, antiderivative size = 238, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276, Rules used = {2889, 3056, 3055, 3001, 3770, 2660, 618, 204} \[ -\frac{2 b^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^6 d}+\frac{\left (5 a^2 b^2+2 a^4-15 b^4\right ) \cot (c+d x)}{15 a^5 d}-\frac{b \left (4 a^2 b^2+a^4-8 b^4\right ) \tanh ^{-1}(\cos (c+d x))}{8 a^6 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^2*Csc[c + d*x]^4)/(a + b*Sin[c + d*x]),x]

[Out]

(-2*b^4*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^6*d) - (b*(a^4 + 4*a^2*b^2 - 8*b^
4)*ArcTanh[Cos[c + d*x]])/(8*a^6*d) + ((2*a^4 + 5*a^2*b^2 - 15*b^4)*Cot[c + d*x])/(15*a^5*d) - (b*(a^2 - 4*b^2
)*Cot[c + d*x]*Csc[c + d*x])/(8*a^4*d) + ((a^2 - 5*b^2)*Cot[c + d*x]*Csc[c + d*x]^2)/(15*a^3*d) + (b*Cot[c + d
*x]*Csc[c + d*x]^3)/(4*a^2*d) - (Cot[c + d*x]*Csc[c + d*x]^4)/(5*a*d)

Rule 2889

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
 m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x) \csc ^4(c+d x)}{a+b \sin (c+d x)} \, dx &=\int \frac{\csc ^6(c+d x) \left (1-\sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx\\ &=-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}+\frac{\int \frac{\csc ^5(c+d x) \left (-5 b-a \sin (c+d x)+4 b \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{5 a}\\ &=\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}+\frac{\int \frac{\csc ^4(c+d x) \left (-4 \left (a^2-5 b^2\right )+a b \sin (c+d x)-15 b^2 \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{20 a^2}\\ &=\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}+\frac{\int \frac{\csc ^3(c+d x) \left (15 b \left (a^2-4 b^2\right )-a \left (8 a^2+5 b^2\right ) \sin (c+d x)-8 b \left (a^2-5 b^2\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{60 a^3}\\ &=-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}+\frac{\int \frac{\csc ^2(c+d x) \left (-8 \left (2 a^4+5 a^2 b^2-15 b^4\right )-a b \left (a^2-20 b^2\right ) \sin (c+d x)+15 b^2 \left (a^2-4 b^2\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{120 a^4}\\ &=\frac{\left (2 a^4+5 a^2 b^2-15 b^4\right ) \cot (c+d x)}{15 a^5 d}-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}+\frac{\int \frac{\csc (c+d x) \left (15 b \left (a^4+4 a^2 b^2-8 b^4\right )+15 a b^2 \left (a^2-4 b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{120 a^5}\\ &=\frac{\left (2 a^4+5 a^2 b^2-15 b^4\right ) \cot (c+d x)}{15 a^5 d}-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}-\frac{\left (b^4 \left (a^2-b^2\right )\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{a^6}+\frac{\left (b \left (a^4+4 a^2 b^2-8 b^4\right )\right ) \int \csc (c+d x) \, dx}{8 a^6}\\ &=-\frac{b \left (a^4+4 a^2 b^2-8 b^4\right ) \tanh ^{-1}(\cos (c+d x))}{8 a^6 d}+\frac{\left (2 a^4+5 a^2 b^2-15 b^4\right ) \cot (c+d x)}{15 a^5 d}-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}-\frac{\left (2 b^4 \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^6 d}\\ &=-\frac{b \left (a^4+4 a^2 b^2-8 b^4\right ) \tanh ^{-1}(\cos (c+d x))}{8 a^6 d}+\frac{\left (2 a^4+5 a^2 b^2-15 b^4\right ) \cot (c+d x)}{15 a^5 d}-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}+\frac{\left (4 b^4 \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^6 d}\\ &=-\frac{2 b^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{a^6 d}-\frac{b \left (a^4+4 a^2 b^2-8 b^4\right ) \tanh ^{-1}(\cos (c+d x))}{8 a^6 d}+\frac{\left (2 a^4+5 a^2 b^2-15 b^4\right ) \cot (c+d x)}{15 a^5 d}-\frac{b \left (a^2-4 b^2\right ) \cot (c+d x) \csc (c+d x)}{8 a^4 d}+\frac{\left (a^2-5 b^2\right ) \cot (c+d x) \csc ^2(c+d x)}{15 a^3 d}+\frac{b \cot (c+d x) \csc ^3(c+d x)}{4 a^2 d}-\frac{\cot (c+d x) \csc ^4(c+d x)}{5 a d}\\ \end{align*}

Mathematica [B]  time = 1.81958, size = 506, normalized size = 2.13 \[ \frac{-1920 b^4 \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )-160 a^3 b^2 \tan \left (\frac{1}{2} (c+d x)\right )+32 \left (5 a^3 b^2+2 a^5-15 a b^4\right ) \cot \left (\frac{1}{2} (c+d x)\right )+120 a^2 b^3 \csc ^2\left (\frac{1}{2} (c+d x)\right )-120 a^2 b^3 \sec ^2\left (\frac{1}{2} (c+d x)\right )+480 a^2 b^3 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-480 a^2 b^3 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+320 a^3 b^2 \sin ^4\left (\frac{1}{2} (c+d x)\right ) \csc ^3(c+d x)-20 a^3 b^2 \sin (c+d x) \csc ^4\left (\frac{1}{2} (c+d x)\right )+15 a^4 b \csc ^4\left (\frac{1}{2} (c+d x)\right )-30 a^4 b \csc ^2\left (\frac{1}{2} (c+d x)\right )-15 a^4 b \sec ^4\left (\frac{1}{2} (c+d x)\right )+30 a^4 b \sec ^2\left (\frac{1}{2} (c+d x)\right )+120 a^4 b \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-120 a^4 b \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-64 a^5 \tan \left (\frac{1}{2} (c+d x)\right )-16 a^5 \sin ^4\left (\frac{1}{2} (c+d x)\right ) \csc ^3(c+d x)-3 a^5 \sin (c+d x) \csc ^6\left (\frac{1}{2} (c+d x)\right )+a^5 \sin (c+d x) \csc ^4\left (\frac{1}{2} (c+d x)\right )+6 a^5 \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^4\left (\frac{1}{2} (c+d x)\right )+480 a b^4 \tan \left (\frac{1}{2} (c+d x)\right )-960 b^5 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+960 b^5 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{960 a^6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^2*Csc[c + d*x]^4)/(a + b*Sin[c + d*x]),x]

[Out]

(-1920*b^4*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] + 32*(2*a^5 + 5*a^3*b^2 - 15*a*b^4
)*Cot[(c + d*x)/2] - 30*a^4*b*Csc[(c + d*x)/2]^2 + 120*a^2*b^3*Csc[(c + d*x)/2]^2 + 15*a^4*b*Csc[(c + d*x)/2]^
4 - 120*a^4*b*Log[Cos[(c + d*x)/2]] - 480*a^2*b^3*Log[Cos[(c + d*x)/2]] + 960*b^5*Log[Cos[(c + d*x)/2]] + 120*
a^4*b*Log[Sin[(c + d*x)/2]] + 480*a^2*b^3*Log[Sin[(c + d*x)/2]] - 960*b^5*Log[Sin[(c + d*x)/2]] + 30*a^4*b*Sec
[(c + d*x)/2]^2 - 120*a^2*b^3*Sec[(c + d*x)/2]^2 - 15*a^4*b*Sec[(c + d*x)/2]^4 - 16*a^5*Csc[c + d*x]^3*Sin[(c
+ d*x)/2]^4 + 320*a^3*b^2*Csc[c + d*x]^3*Sin[(c + d*x)/2]^4 + a^5*Csc[(c + d*x)/2]^4*Sin[c + d*x] - 20*a^3*b^2
*Csc[(c + d*x)/2]^4*Sin[c + d*x] - 3*a^5*Csc[(c + d*x)/2]^6*Sin[c + d*x] - 64*a^5*Tan[(c + d*x)/2] - 160*a^3*b
^2*Tan[(c + d*x)/2] + 480*a*b^4*Tan[(c + d*x)/2] + 6*a^5*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2])/(960*a^6*d)

________________________________________________________________________________________

Maple [A]  time = 0.119, size = 439, normalized size = 1.8 \begin{align*}{\frac{1}{160\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}-{\frac{b}{64\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}}+{\frac{1}{96\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+{\frac{{b}^{2}}{24\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{{b}^{3}}{8\,d{a}^{4}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{1}{16\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{{b}^{2}}{8\,d{a}^{3}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{{b}^{4}}{2\,d{a}^{5}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-2\,{\frac{{b}^{4}\sqrt{{a}^{2}-{b}^{2}}}{d{a}^{6}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }-{\frac{1}{160\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-5}}-{\frac{1}{96\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}}-{\frac{{b}^{2}}{24\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}}+{\frac{1}{16\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}+{\frac{{b}^{2}}{8\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{{b}^{4}}{2\,d{a}^{5}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}+{\frac{b}{64\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-4}}+{\frac{{b}^{3}}{8\,d{a}^{4}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}}+{\frac{b}{8\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }+{\frac{{b}^{3}}{2\,d{a}^{4}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{{b}^{5}}{d{a}^{6}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^6/(a+b*sin(d*x+c)),x)

[Out]

1/160/d/a*tan(1/2*d*x+1/2*c)^5-1/64/d/a^2*tan(1/2*d*x+1/2*c)^4*b+1/96/d/a*tan(1/2*d*x+1/2*c)^3+1/24/d/a^3*tan(
1/2*d*x+1/2*c)^3*b^2-1/8/d/a^4*tan(1/2*d*x+1/2*c)^2*b^3-1/16/d/a*tan(1/2*d*x+1/2*c)-1/8/d/a^3*b^2*tan(1/2*d*x+
1/2*c)+1/2/d/a^5*b^4*tan(1/2*d*x+1/2*c)-2/d*b^4*(a^2-b^2)^(1/2)/a^6*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a
^2-b^2)^(1/2))-1/160/d/a/tan(1/2*d*x+1/2*c)^5-1/96/d/a/tan(1/2*d*x+1/2*c)^3-1/24/d/a^3/tan(1/2*d*x+1/2*c)^3*b^
2+1/16/d/a/tan(1/2*d*x+1/2*c)+1/8/d/a^3/tan(1/2*d*x+1/2*c)*b^2-1/2/d/a^5/tan(1/2*d*x+1/2*c)*b^4+1/64/d/a^2*b/t
an(1/2*d*x+1/2*c)^4+1/8/d/a^4*b^3/tan(1/2*d*x+1/2*c)^2+1/8/d/a^2*b*ln(tan(1/2*d*x+1/2*c))+1/2/d/a^4*b^3*ln(tan
(1/2*d*x+1/2*c))-1/d/a^6*b^5*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^6/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.80926, size = 2261, normalized size = 9.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^6/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[-1/240*(240*a*b^4*cos(d*x + c) - 16*(2*a^5 + 5*a^3*b^2 - 15*a*b^4)*cos(d*x + c)^5 + 80*(a^5 + a^3*b^2 - 6*a*b
^4)*cos(d*x + c)^3 - 120*(b^4*cos(d*x + c)^4 - 2*b^4*cos(d*x + c)^2 + b^4)*sqrt(-a^2 + b^2)*log(((2*a^2 - b^2)
*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2
+ b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2))*sin(d*x + c) + 15*(a^4*b + 4*a^2*b^3 - 8*b^5 +
(a^4*b + 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^4 - 2*(a^4*b + 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^2)*log(1/2*cos(d*x + c
) + 1/2)*sin(d*x + c) - 15*(a^4*b + 4*a^2*b^3 - 8*b^5 + (a^4*b + 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^4 - 2*(a^4*b
+ 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 30*((a^4*b - 4*a^2*b^3)*cos(d
*x + c)^3 + (a^4*b + 4*a^2*b^3)*cos(d*x + c))*sin(d*x + c))/((a^6*d*cos(d*x + c)^4 - 2*a^6*d*cos(d*x + c)^2 +
a^6*d)*sin(d*x + c)), -1/240*(240*a*b^4*cos(d*x + c) - 16*(2*a^5 + 5*a^3*b^2 - 15*a*b^4)*cos(d*x + c)^5 + 80*(
a^5 + a^3*b^2 - 6*a*b^4)*cos(d*x + c)^3 - 240*(b^4*cos(d*x + c)^4 - 2*b^4*cos(d*x + c)^2 + b^4)*sqrt(a^2 - b^2
)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c)))*sin(d*x + c) + 15*(a^4*b + 4*a^2*b^3 - 8*b^5 +
(a^4*b + 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^4 - 2*(a^4*b + 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^2)*log(1/2*cos(d*x + c
) + 1/2)*sin(d*x + c) - 15*(a^4*b + 4*a^2*b^3 - 8*b^5 + (a^4*b + 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^4 - 2*(a^4*b
+ 4*a^2*b^3 - 8*b^5)*cos(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 30*((a^4*b - 4*a^2*b^3)*cos(d
*x + c)^3 + (a^4*b + 4*a^2*b^3)*cos(d*x + c))*sin(d*x + c))/((a^6*d*cos(d*x + c)^4 - 2*a^6*d*cos(d*x + c)^2 +
a^6*d)*sin(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**6/(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.21876, size = 599, normalized size = 2.52 \begin{align*} \frac{\frac{6 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 15 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 10 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 40 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 120 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 60 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 120 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 480 \, b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{5}} + \frac{120 \,{\left (a^{4} b + 4 \, a^{2} b^{3} - 8 \, b^{5}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{6}} - \frac{1920 \,{\left (a^{2} b^{4} - b^{6}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} a^{6}} - \frac{274 \, a^{4} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 1096 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 2192 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 60 \, a^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 120 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 480 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 120 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 10 \, a^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 40 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 15 \, a^{4} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6 \, a^{5}}{a^{6} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5}}}{960 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^6/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/960*((6*a^4*tan(1/2*d*x + 1/2*c)^5 - 15*a^3*b*tan(1/2*d*x + 1/2*c)^4 + 10*a^4*tan(1/2*d*x + 1/2*c)^3 + 40*a^
2*b^2*tan(1/2*d*x + 1/2*c)^3 - 120*a*b^3*tan(1/2*d*x + 1/2*c)^2 - 60*a^4*tan(1/2*d*x + 1/2*c) - 120*a^2*b^2*ta
n(1/2*d*x + 1/2*c) + 480*b^4*tan(1/2*d*x + 1/2*c))/a^5 + 120*(a^4*b + 4*a^2*b^3 - 8*b^5)*log(abs(tan(1/2*d*x +
 1/2*c)))/a^6 - 1920*(a^2*b^4 - b^6)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c)
 + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^6) - (274*a^4*b*tan(1/2*d*x + 1/2*c)^5 + 1096*a^2*b^3*tan(1/2*d*x +
 1/2*c)^5 - 2192*b^5*tan(1/2*d*x + 1/2*c)^5 - 60*a^5*tan(1/2*d*x + 1/2*c)^4 - 120*a^3*b^2*tan(1/2*d*x + 1/2*c)
^4 + 480*a*b^4*tan(1/2*d*x + 1/2*c)^4 - 120*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 + 10*a^5*tan(1/2*d*x + 1/2*c)^2 + 4
0*a^3*b^2*tan(1/2*d*x + 1/2*c)^2 - 15*a^4*b*tan(1/2*d*x + 1/2*c) + 6*a^5)/(a^6*tan(1/2*d*x + 1/2*c)^5))/d